
1 

 

Towards Explainability of UAV-Based 

Convolutional Neural Networks for Object Classification 
 

Chester Dolph,1  Loc Tran2, and B. Danette Allen3 

NASA Langley Research Center, Hampton, VA, 23681 

Establishing a basis for certification of autonomous systems using trust and 

trustworthiness is the focus of Autonomy Teaming and TRAjectories for Complex Trusted 

Operational Reliability (ATTRACTOR), a new NASA Convergent Aeronautical Solutions 

(CAS) Project.  One critical research element of ATTRACTOR is explainability of the 

decision-making across relevant subsystems of an autonomous system.  The ability to explain 

why an autonomous system makes a decision is needed to establish a basis of trustworthiness 

to safely complete a mission.  Convolutional Neural Networks (CNNs) are popular visual 

object classifiers that have achieved high levels of classification performances without clear 

insight into the mechanisms of the internal layers and features. To explore the explainability 

of the internal components of CNNs, we reviewed three feature visualization methods in a 

layer-by-layer approach using aviation related images as inputs. Our approach to this is to 

analyze the key components of a classification event in order to generate component labels for 

features of the classified image at different layers of depths. For example, an airplane has 

wings, engines, and landing gear. These could possibly be identified somewhere in the hidden 

layers from the classification and these descriptive labels could be provided to a human or 

machine teammate while conducting a shared mission and to engender trust. Each descriptive 

feature may also be decomposed to a combination of primitives such as shapes and lines. We 

expect that knowing the combination of shapes and parts that create a classification will enable 

trust in the system and insight into creating better structures for the CNN.  

I. Nomenclature 

ATTRACTOR = Autonomy Teaming and TRAjectories for Complex Trusted Operational Reliability 

CNN   = Convolutional Neural Network 

fps   = Frames per Second   

GPU   =  Graphics Processing Unit 

R-CNN   = Region-based Convolution Neural Network 

SARUC    = Search and Rescue Under the Canopy 

UAV    = Unmanned Aerial Vehicle  

II. Introduction 

 

 Great interest exists in using deep learning methods to solve image classification problems [1].  One area of recent 

research interest is greater understanding of the internal mechanisms within neural networks.  The process of how 

deep neural networks make decisions is not fully understood.  The meaning of the internal components and why image 

features are chosen in the training process for a given layer is not clear.  This concept of understanding the internal 

workings is called neural network explainability or interpretability. Deep network interpretability is a challenging 

problem because the internal components are non-linear representations of 2D images at varying levels of feature 

extraction with complex patterns that are visually unintuitive [1].   Feature visualization is a method of producing a 

visual representation of a network at the neuron, channel, or layer level.   The visualization may be a manifestation of 

weights, convolution filters, activations, gradients, neurons, the response to a given input image, an amplification of 
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neural activity, reconstruction of the input from the response, or a combination of the aforementioned feature 

visualization techniques.     

Currently, a CNN is often used as a black box where users train the network using an image dataset, supply an 

input image, and the output is a classification with little to no supporting evidence to why the classification is made. 

In this work, we explore context to classification through insights extracted from intermediate layers of a deep CNN. 

A deep CNN is composed of multiple layers between the input and output. Researchers have been tuning CNNs to get 

improved classification accuracy and speed for their application while forgoing explainability of the system. We are 

developing a system to extract intermediate information in a layer-by-layer approach. In addition to a classification, 

we will generate labels for information in the previous layer. We also present a survey of feature visualization 

techniques applied to aviation imagery and compare their outputs.  The goal of this work is to achieve a greater 

understanding and explainability of CNN while focusing on aviation-related imagery. Reducing or even eliminating 

the “black box” implementation of image classification via explainability is critical to effective teaming of humans 

and machines where establishing trust between agents executing a shared mission.  This is helpful in actual operations 

as well as testing and development. 

III. Background 

A. Deep Convolutional Neural Networks 

 Convolutional Neural Networks (CNN) have received substantial interest due to their high classification accuracies 

in  image classification competitions (e.g., ImageNet [2])  and ease of training with automated learning for applications 

such as speech recognition, optical character recognition, and image based object recognition.  Array-based 

multiplication is used extensively in the training of CNNs, thus substantial advances in the computational performance 

of GPUs in the last decade have enabled CNNs with over 100 layers and real-time systems on small UAVs using 

embedded computers.  CNNs are composed of a sequence of layers.  The first layers are typically convolution and 

max pooling.  The convolution layer convolves the input of the layer by a filter from a filter bank.  The filters are 

generated during the training or transfer learning process.  The filters or kernels extract different type of information 

from an input (e.g. contours from an image). The output of the convolution layer is passed to a pooling layer where it 

is subsampled and passed to another convolution layer as an input.  The final layer classifies the output of the previous 

layer using a probability function.  

 The architecture of deep neural networks utilize a series of convolution and pooling layers followed by several 

fully connected layers, resulting in a complex neural network where the internal weights of the neurons may not be 

readily understood by humans.  

B. Region-based Convolutional Neural Networks (R-CNN)  

 

 

Fig. 1 Network structure of Faster R-CNN. 
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 This section details Faster R-CNN, a recent CNN approach that efficiently combines object classification with an 

object detection module [3].  In a deep convolutional network, the first few layers are generally convolutional layers 

that encapsulate low level image primitives such as edges, corners, and spots. These primitives are the foundation to 

a variety of computer vision tasks.  By reusing these low level layers, Faster R-CNN is capable of both detecting 

potential objects and classifying the objects while only computing the first convolutional layers once. Fig. 1 shows 

the structure of Faster R-CNN where the region proposals are generated in one branch of the network.  The result of 

the proposals is used to select the feature maps for the classification task. 

 

 Previous work completed by our group [4] includes implementing a custom trained network based on the Faster 

R-CNN framework for real-time obstacle detection onboard a small UAV.  The algorithm was deployed on an 

NVIDIA Jetson TX2 and could achieve 3 fps on the embedded computer.  Fig. 2 shows a sample output from the 

network simultaneously detecting trees, persons, and drones indoors. The work showed that UAV-based embedded 

object classification was feasible especially as network structures continue to be optimized and hardware continues to 

advance.  We were inspired to explore the explainability aspect of neural network decision making from this work to 

add trustworthiness to autonomous mission using CNNs. While the performance of the state of the art CNNs such as 

Faster-RCNN are impressive, CNNs are not transparent in nature. Determining what in the image causes the algorithm 

to choose one classification over another is difficult and more information is needed to build confidence in the resulting 

classification.  

 

 

Fig. 2 Faster R-CNN output showing simultaneous detections of a person, trees, and a drone indoors. 

 

C. Inception Network  

 

In this paper, we focus on visualizing features from the Inception network [5] which is a popular CNN approach. The 

Inception network introduced an efficient method to combine multiple types of layers into one module.  The network 

could then capture details at various scales such as with convolution kernels with different sizes. When customizing 

the structure of a CNN, a researcher must select the ordering, size, and shape of a layer.  For example, a layer could 

be a 3x3 convolution, 5x5 convolution, a pooling layer, a fully connected layer, or many other types. In [5], the 

researchers chose to implement a combination of multiple types into one layer which they called an Inception module.  

An example of an Inception module is shown in Fig. 3 where three different convolutional layers are combined with 

a pooling layer. The researchers show that by performing 1x1 convolutional layers before the 3x3 and 5x5 

convolutional layers, the dimensionality can be reduced which also reduces the number of computations required to 

perform the larger convolutional layers.  The Inception module can be viewed as a network inside of a network whose 

goal is to optimize layer topology.   
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            Fig. 3 Inception module structure.  

 

D. Explainability  

 

 Despite the success of CNN and their improved architectures such as Inception and ResNet [6], the internal 

mechanisms of what causes the high classification accuracies remain unclear [7].  Substantial interest has been given 

to improving the classification accuracies of neural networks without focusing on the explainability of the inner layers.  

CNNs are commonly being used as black boxes where a structure is defined and then trained over large data sets.  The 

emphasis placed on the resulting model is typically focused on achieving high test accuracy while forgoing 

transparency of the algorithm.  Neural network interpretability is a burgeoning area of research with a few different 

approaches through feature visualization to better understand the inner workings of the neural networks.  The imagery 

generated during feature visualization provides a means to provide human interpretability for neural networks.  A 

better understanding of the internal networks may lead to: 1) Improved trust of CNN to perform safety critical tasks 

2) Opportunity of retraining the network during a mission as new information is gained such as objects of interest 3) 

Improvement in CNN design by understanding which features and layers are most important for classification and 

which are superfluous.  

 

IV. Feature Visualization Approaches 

 

 This section shows the output for different feature visualization techniques for the input image shown in Fig. 4. 

 

 

Fig. 4 Input image to visualization algorithm [2]. 
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A. Activation  

 

 Activation is a primitive type of feature visualization in which the outputs for a given layer are visualized.  This is 

most useful for the first few layers as they more directly map to image space, meaning objects still maintain their 

morphological appearance.  The first layers find edges and contours.  The deeper layers are more difficult to 

conceptualize because each neuron represents a combination of neurons from previous layers.  Therefore the later 

layers appear more abstract because they no longer directly associate with 1 pixel – rather they represent a combination 

of filters on an image.    Fig. 5 shows a progression of activation visualizations from three select layers of the Inception 

network when the image from Fig. 4 is input into the network.   

 

 Fig. 5a shows the activation of the 1st convolution layer.  The intensity of each pixel directly corresponds to one 

convolutional filter. At this level, it would be possible to identify the exact filters that are applied on the image.  For 

instance, one filter could be activating on vertical lines in a 7x7 kernel. Fig. 5b shows the activation of the 3rd 

convolution layer.  The activations here are a combination of the two convolution layers before it.  While the outline 

of the plane can still be seen indicating that the combination of filters to this point is activating on this region of the 

image, it is harder to identify the shape or texture that the network is activating upon. Fig. 5c shows the 5x5 

convolution layer of the 5th Inception module which is towards the end of the network.  At this layer, there is little to 

no explainable information that can be gleaned from visualizing the activations.   

 

   
a) 1st convolution layer b)    3rd convolution layer c) mixed5a_5x5, 5th inception 

module 

Fig. 5 Visualization of neuron activations for selected layers. 

B. Deconvolutional Approach 

 Deconvolution provides a means of visualizing layers of CNNs in image space. Deconvolution maps information 

from layer(s) back to reconstruct the input image. The first step is deconvolution is to feed an input image through a 

CNN and map all features.  The second step passes a feature map from a given layer through all subsequent layers by 

unpooling, rectifying, and finally filtering.  The activations that are not associated with the feature map for a given 

layer are set to zero prior to passing the feature map through the network. In this way, the features for a given layer 

from a given input image may be interpreted through all subsequent layers.  

   

 Visualization using deconvolution for three layers is shown in Fig. 6 through Fig. 8.  In Fig. 6, the visualization 

for the first convolution layer is shown. Each grid image represents a neuron.    Each image in Fig. 6 is a feature 

activation extracted from the input image.  At early layers of CNNs, primitive features such as edges and textures are 

extracted.  The images in Fig. 6 show a profile of the airplane with lines at different angles or textures.  Each image 

shows how much a neuron is activating for its particular convolution filter.  This gives us insight on what the particular 

neuron is activating on.  For example, the bottom left image may be looking for sharp lines which only show up on 

the airplane but not the background.  The top left image may be activating on low frequency changes which appear in 

the clouds as well as the airplane.  
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Fig. 6 Visualization of deconvolution reconstruction of 1st convolutional layer.   

The left image shows the entire layer while the right image shows 4 neurons from the layers.   

 

 The deconvolution output for the same layer as Fig. 5c is shown in Fig. 7 below.  Differing parts of the airframe, 

engines, and landing gear are emphasized by each neuron.  Here, a neuron is a manifestation of neurons activated from 

previous layers. The appearance of the airframe at these layers shows a combination of lower level features. The focus 

of the neuron is shown to be the right wing in the left image, the cockpit in the top right image, and left wing in the 

bottom left. The neurons focus on different regions and substructures of the aircraft at this layer.  Overall, the feature 

reconstruction shows a more clear structure for the airplane than in Fig. 6 and Fig. 5c.  Higher level features than the 

image primitives in the first layer are represented in the features activations for this layer in the deconvolution 

approach.  The black boxes in Fig. 7 represent switches and neurons that do not fire for the given input image.  Theses 

switches do not pass information to the later CNN levels.   

 

 

 
 

Fig. 7 Visualization of deconvolution reconstruction of (mixed5a_5x5, 5th inception module).  The 

left image shows the entire layer while the right image shows 4 neurons from the layers.   
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 Finally the feature activation in Fig. 8 shows less variance between neuron output as the shape and contours appear 

more homogeneous between the images.  The neurons in these layers emphasize features at the class level. The entire 

airframe, engines, landing gear, flaps and ailerons are represented by the features to provide the information needed 

to classify the object as an airplane. This is consistent with the hierarchical nature of the CNN, where later layers 

contain more complex features.    

 

 

 
 

Fig. 8 Visualization of deconvolution reconstruction of (softmax 2 pre-activation).  

The left image shows the entire layer while the right image shows 4 neurons from the layers. 

C. DeepDream 

 DeepDream [5] [8] is a method that modifies an input image such that patterns that stimulate a particular layer of 

a CNN are enhanced.  The result are dream-like aberrations in the original image. Depending on the layer, this may 

amplify higher or lower level features.  The DeepDream steps are:  
 

1) start with an input image and choose a layer   

2) extract the activations for the layer  

3) set gradient to its activation  

4) calculate gradient on image  

5) revise image  

6) repeat steps 2 through 4 for the number of iterations.  
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a) Airliner b) Warplane/military plane c) Airship/dirigible 

Fig. 9 Visualization of DeepDream softmax2 pre-activation for 20 iterations from the Inception network.   

The input image for all three classes here is in Fig. 4.   

The output classes are specified in the captions for a), b), and c). 

 

When performed at lower layers, texture information is inserted into the image.  Higher layers such as those shown 

in Fig. 9, show higher layers of abstraction.  At this layer, recognizable components of a class can be inserted into the 

image. While the input image was of an airliner, Fig. 9b and Fig. 9c show insertions of different classes.  In this way, 

we force the network to use activations that do not match the input image.  Places where the identifiable components 

appear provides a sense of the spatial interest in the image of the layer for a class that is not selected by the classifier.  

DeepDream feature visualization may allow for correction of a network due to a problem from the training process.  

Suppose a network has only been trained on airplanes on runways.  Then presented with an image of an airplane in 

the air, it may incorrectly classify because it was using features from the runway and airplane to classify planes.  If 

we were to visualize the airplane class and see runways inserted into the image, then feature visualization may reveal 

this problem. 

D. Mask R-CNN segmentation approach  

 

The Mask R-CNN network extends the Faster R-CNN network by adding a segmentation pipeline. The additional 

pipeline performs pixel-based segmentation in parallel to the classification portion of the faster R-CNN.   While 

segmentation by itself is not a feature visualization method, it is an improved method of inspecting the output of R-

CNN, which aids in neural network interpretability.  Fig. 10 below shows output of a Mask R-CNN segmentation 

from a recent ATTRACTOR demonstration showing a Search and Rescue under the Canopy (SARUC) mission. In 

the demonstration, we tested multiple UAVs autonomously traversing a wooded environment while searching for 

people using a forward-facing camera.  One of the capabilities needed for this mission is a person-detection algorithm.  

The Mask R-CNN algorithm’s contoured segmentation is an improvement over the rectangular boxes of Faster R-

CNN where the lines do not follow the edges of the classified object.  Two people are correctly labeled and segmented 

in the image despite the occlusion of the person in the background by the other first person.  The contour information 

of the classified people could lead to an operator trusting the algorithm because the shape is consistent with the 

classification result. 
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Fig. 10 Mask-RCNN showing detections of people. Mask-RCNN adds an object  

segmentation module on top of the region and classification modules of RCNN. 

 

Another example mission is to confirm a landing zone is safe to land without people below [9].  Fig. 11a shows 

the output of Mask R-CNN from UAV imagery where people have been correctly identified. Fig. 11b shows a 

classification of a shadow as a human that resembles the profile of a head. Additionally, the trailer on the left is 

classified as a truck.  The segmentation provides insight into the decision making process.  The object confusion may 

be better understood by performing feature visualization.  Visualizing the features for truck class may help understand 

why the trailer was labeled as a truck.  The physical structure of trailers and trucks are similar with their boxy 

geometries, which may have been a factor with the misclassification. Reviewing the truck classification to increase 

the weight of features on the cab structure may help resolve this misclassification.   

  

a) Three correct detections are shown with people in 

field at an altitude of approximately 100 ft.  One 

person is missed by trailer on left. The false 

positive in the opening of the trailer resembles a 

person in profile. 

b) Two false positives: a trailer is classified as a 

truck and shadow is classified as a person. 

Fig. 11 Mask-RCNN on images showing detection of persons from a UAV-mounted camera. 
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V. Future Work 

From the results we have generated, it is evident that the CNN weights and activations are easier to comprehend 

when projected into image space.  This enables explainability of particulars parts of the network, which is needed for 

establishing a basis of trust.   The algorithms we reviewed use a deconvolution or gradient ascent process to move 

backwards through the neural network and project activations to image space.  Our plans in the future include 

exploring autoencoders for explainability and inference research. An autoencoder is a another type of neural network 

where the input data is decoded and re-encoded to reconstruct the same information that the input data represented, 

which results in a dimensionality reduction.  An autoencoder’s structure inherently has a forward and backward 

network with the goal of being able to reconstruct the original input.  The encoded neurons can be viewed as a 

dimensionality reduction of the data set. Because the learned latent variables contain the information necessary to 

reconstruct the original images, visualization of the latent variables are expected to produce more distinct and 

discernable features compared to traditional neural networks. Variations of autoencoders are used to create generative 

models [10] and also for classification tasks [11].     

 

VI. Conclusion 

In this work, we reviewed several feature visualization techniques using aviation imagery.  Each of the feature 

visualization techniques explores a different perspective on the internal layers: activation visualizes the weights, 

deconvolution visualizes the pixels from an input image that cause neurons to fire for a given layer, and DeepDream 

amplifies features and patterns within an image. Visualization of activation layers reveals image primitives at lower 

levels while higher layers are abstract.  Deconvolution provides insight for the higher level features at deeper layers 

where the activation method is unsuccessful.  DeepDream is useful for understanding the stimulation of a layer.  

These image classification insights and rationale for that classification aid in explainability of autonomous decision 

making.  Explainability is a critical aspect of establishing a basis for certification of autonomous systems. Building 

this basis by establishing metrics for trustworthiness and trust is the focus of the ATTRACTOR project.  The context 

of a classification decision is useful to SARUC because it brings explainability to the autonomous system to make a 

decision such as: image this part of the woods more thoroughly because a shadow resembles a person.  Or this part of 

the woods does not have humans, time to plan with the other agents performing the search for the next search location 

and pattern.   

Understanding what caused the neural network to arrive at a decision provides a higher dimension of understanding 

the classification decision and adds explainability. Developing the means of contextualizing the classification decision 

will aid in the advancement of neural networks.  As neural networks continue to outperform other methods for 

classification tasks, understanding why networks makes decisions is crucial to advancing the trustworthiness of 

networks to perform safety critical tasks and expand interactive capability alongside humans.   
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